Zwar waren die grössten Infektionsherde gleich zu Beginn der Pandemie weniger in den Seilbahnen, als vielmehr beim «Apres-Ski» in Bars und Discotheken zu suchen. Trotzdem haben Forscher der Empa die Verkehrsmittel in Skigebieten in den zurückliegenden Monaten mit Erfolg unter die Lupe genommen.
Die Hauptausbreitungswege von Covid-19 waren von Anfang an schwer einzuschätzen. Komplexe mathematische Modelle, die Infektionsrisiken beziffern, können letztendlich nur Versuche sein, sich der Realität anzunähern, sagt Ivan Lunati. Deshalb begann sein Team von der Empa-Abteilung «Multiscale Studies in Building Physics» seine Arbeit just in dieser Wirklichkeit: in Seilbahnkabinen und -gondeln der Bergbahnen Engelberg-Trübsee-Titlis (BET).
Um dort den Faktor «Luftaustausch» zu erkunden, der bei der Verbreitung der Erreger bekanntlich eine wichtige Rolle spielt, untersuchten die Forscher drei Kabinentypen: eine kleinere Gondel vom Typ Omega 3 mit einem Volumen von gut fünf Kubikmetern für maximal acht Passagiere und zwei grössere Kabinen mit Raum für 80 beziehungsweise 77 Menschen und einem Volumen von knapp 40 beziehungsweise knapp 50 Kubikmetern.
Wie sich die Luft in diesen Fahrzeugen bewegt, liess das Empa-Team zunächst mit einem mobilen System erkunden: In Zusammenarbeit mit der Firma «Streamwise» wurde mittels Luftdrucksensoren die räumliche Verteilung der Strömung in Echtzeit erfasst. Aus diesen Daten berechneten die Forscher dann «Luftaustausch-Raten» für die jeweiligen Kabinentypen.
Abb.: Empa
In die gleiche Richtung zielten Messungen des CO2-Gehalts, der als gutes Mass für den Luftaustausch in Innenräumen gilt. Bei Fahrten in der kleinsten Kabine von der Talstation zur Bergstation in gut 2400 Metern Höhe erfassten zwei Sensoren – auf Kopf- und Bauchhöhe – die Konzentration des Gases. Die Resultate: Waren beide Schiebefenster an der rechten Gondelseite geschlossen, stieg der Wert bis zum nächsten Halt, an dem die Türen öffneten, nahezu linear an. War eines der beiden Fenster geöffnet, fiel der CO2-Anstieg deutlich geringer aus. Und bei zwei offenen Fenstern stabilisierte sich der Wert rasch um 500 ppm, also «parts per million», nach einem Anfangswert von 400 ppm, was der Aussenluft entspricht.
Die CO2-Messkampagne dauert zwar noch an, doch sie hat bereits die Resultate der Messungen mit den Luftdrucksensoren bestätigt. Konkret: In der kleinsten Kabine wurde die Luft 138-mal pro Stunde ausgetauscht, in der mittleren 180-mal – und in der grössten nur 42-mal. Die Ursachen sind laut Lunati die aufklappbaren Fenster im Dach der Gondel: «Im Gegensatz zu den anderen Kabinen ist der Luftstrom durch den Fahrtwind sehr sensibel», erklärt er. «Dort herrschen kompliziertere Strömungsverhältnisse, die weniger effizient sind.»
Auf den ersten Blick mag die Zahl von 42 Luftwechseln pro Stunde gering erscheinen, doch ein Vergleich mit anderen Innenräumen rückt den Eindruck ein wenig zurecht: In einem Zugwaggon finden sieben bis 14 Luftwechsel statt; in einem durchschnittlichen Zweier-Büro sogar nur etwa ein Luftwechsel pro Stunde. In Seilbahnkabinen tragen geöffnete Fenster also klar dazu bei, das Risiko einer hohen Aerosolkonzentration zu verringern.
Doch was ist mit der Emissionsrate an Erregern? Ein kniffliger Punkt, so Lunati, weil manche Eigenschaften von Sars-CoV-2 noch ungeklärt sind. Zudem hängt der Ausstoss bekanntlich auch vom Verhalten eines infizierten Menschen ab. Atmet dieser ruhig, oder ist er vom Skifahren so angestrengt, dass er heftig schnauft? Lacht er, spricht er – und wenn ja, laut oder leise? Gute Daten dazu sind laut Lunati derzeit rar. Noch dazu sei physikalisch nicht vollständig geklärt, wie sich Tröpfchen und Aerosole in einem Raum exakt ausbreiten.
Die Empa-Forscher liessen sie auch die Verbreitung des Virus in der Bevölkerung mit einfliessen – also die Wahrscheinlichkeit, dass in einer Kabine ein, zwei oder sogar mehr Virusträger anwesend sein könnten. Ein einfaches Zahlenbeispiel für eine Kabine mit fünf Menschen: Bei einer Verbreitung des Virus von 0,1 Prozent der Bevölkerung läge die Wahrscheinlichkeit, dass eine unerkannt infizierte Person anwesend ist, statistisch bei rund 1:200 – und bei 1:10000, dass zwei Infizierte anwesend sind. Im Falle einer grösseren Verbreitung von einem Prozent der Bevölkerung wäre dieses Risiko entsprechend 1:20 für einen und 1:1000 für zwei Infizierte.
Dass jede 100. Person infiziert ist, sei als Spitzenwert während einer Pandemie durchaus realistisch, so Lunati; es entspräche den Resultaten des Massentests in Graubünden. Ein real möglicher Fall, bei dem 80 Menschen eine vollbesetzte Kabine bevölkern, wäre in diesem Fall freilich schon heikler: Dann liege die Wahrscheinlichkeit, dass eine Person unerkannt infiziert sei, laut den Empa-Fachleuten bei rund 36 Prozent.
Mit diesen und anderen Faktoren wie etwa der Zeitspanne, in der Erreger inaktiv werden, errechneten die Forscher zunächst Infektionsrisiken für anfällige Personen in der Kabine – und daraus schliesslich ein Risiko für sämtliche Passagiere. Wichtigste Parameter sind die Luftaustauschrate, die Anzahl Infizierte pro Luftvolumen und die gesamte Verweildauer. Die Resultate für eine kleinere Seilbahnkabine (acht Personen, offene Fenster) veranschaulicht ein Vergleich mit anderen Orten: Ein Dinner-Event auf 30 Quadratmetern mit acht Menschen, die sich laut unterhalten, wäre massiv riskanter. Das Infektionsrisiko einer zwölfminütigen Fahrt mit der kleineren Kabine sei zudem deutlich geringer als bei einem achtstündigen Arbeitstag in einem Zweierbüro mit 20 Quadratmetern Fläche, dessen «Luftfüllung» einmal pro Stunde ersetzt wird. Wenn die Fenster also offenbleiben, bedeutet ein Skitag mit einigen Kabinenfahrten ein deutlich geringeres Ansteckungsrisiko als ein Arbeitstag in einem wenig belüfteten Zweierbüro.
Die Abschätzungen der Empa-Forscher sind zunächst für den Fall «ohne Masken» ausgelegt. «Wir wollten das reine Infektionsrisiko durch Aufenthalte in Seilbahnkabinen ermitteln», erklärt Lunati. «Wenn sie richtig getragen werden, reduzieren Masken das Risiko entsprechend ihrer jeweiligen Filterleistung. Sie schützen vor allem vor der grösseren Tröpfchen-Übertragung, zum Beispiel durch Sprechen, sehr gut.»
Welche konkreten Empfehlungen leiten sich aus den neuen Erkenntnissen ab? Neben dem naheliegenden Ratschlag «Bitte lüften!» lohnt es sich auch, die Anzahl der Passagiere pro Fahrt zu begrenzen. «Das wird in Skigebieten ohnehin schon gemacht und ist auf jeden Fall die richtige Strategie», so Lunati.
Für Liftbetreiber dürften solche Informationen in jedem Fall nützlich sein. «Die Zusammenarbeit mit der Empa ermöglicht es uns, an professionelle und unabhängige Messdaten zu kommen», meint Marketingleiter Urs Egli von den Titlis Bergbahnen. «Wir schätzen die Kooperation sehr. Und in Anbetracht der aktuellen Lage ist sie noch wertvoller für uns.»
In Zukunft wollen die Empa-Forscher ihre Rechenmodelle weiter verfeinern oder auch ganz neue Ansätze entwickeln, um der Wirklichkeit noch näher zu kommen. Und zudem die Datengrundlage für den Ausstoss von Viren verbessern – mit einer «Hust-Maschine», die sie in ihrem Labor entwickelt haben. Aus zwei Zylindern, vergleichbar mit Lungenflügeln, gelangt über Schläuche spezielle Druckluft in einen «Kopf»: aufgeheizt auf Körpertemperatur, angereichert Feuchtigkeit und Tröpfchen, deren Verbreitung dann zwei Kameras aufzeichnen – geeignet auch für Tests von künftigen Schutzmasken.
Mit dem Seilbahnkabinenhersteller CWA in Olten, der die Forschung verfolgt und unterstützt hat, sind bereits Gespräche über eine Kooperation im Gange. «Das Thema Luftaustausch wurde bislang eher stiefmütterlich behandelt», sagt Massimo Ratti. Daten wie diejenigen von der Empa, so der «Chief Technical Officer» von CWA, seien da wirklich hilfreich – nicht nur in der aktuellen Lage, sondern auch mit Blick auf künftige Seilbahnen im öffentlichen Nahverkehr. Dort sind die Ansprüche schliesslich noch höher als in Skigebieten, erklärt der Fachmann: «Wir wären sehr daran interessiert, bei einem Forschungsprojekt für Kabinen mit noch besserer Luftzirkulation mitzumachen.»
- Details